"Freedom" Service-Oriented Methodology
White Paper

An Introduction to
Requirements Encapsulation and Definition
by
Rick Lutowski
rick@jreality.com

Copyright (C) 2003 LDJ Trust
All rights reserved.

Virtually everyone in the software industry considers it a truism that many, if not
most, requirements will be forward traceable to more than one code module.
While this is true using today’s methodologies, it need not be true in the very
near future. A few software engineers, including this writer, have been
encapsulating every requirement of a requirements specification individually
within a single code module for years. Perhaps you are thinking, "That would
require a magician or IT from Mars." Close. The trick is to use IT developed for
those who are trying get there. As for magicians, there is no such thing; magic is
mostly a matter of proper perspective.

Here is that perspective.
Guidance

A long web-time ago (1981) on a project faded far from collective memory, Dr.
David Parnas and Ms. Kathy Britton, both of the Naval Research Laboratory
Software Cost Reduction (SCR) Project, published a paper proposing that the
then—emerging concept of information—hiding could be used to encapsulate
three major types of information. The A-7E Software Module Guide referred to
encapsulated information as module "secrets" because the implementation
details of the information was known only to the encapsulating module. By hiding
knowledge of implementation details behind the stable interface of the module,
other modules which utilize that information need not be affected when the
implementation details of the "secret" information changes. The result is more
maintainable software with lower life—cycle cost.

The Module Guide implied maximum life—cycle cost savings would result when
three types of information with high probability of change were all made secrets
hidden within modules. These three types of hidden information are:



1. Hardware—software interfaces
2. Software design decisions
3. Required behavior

The first type of module secret listed in the Module Guide is software interfaces
to hardware. Hardware programmatic interfaces are encapsulated within
hardware—hiding modules, which are "programs that need to be changed if any
part of the hardware is replaced". These types of modules came into common
use in operating system design under the moniker of "device drivers." All modern
operating systems now use device drivers, even if the remainder of the operating
system is not written using information—hiding concepts.

The second category of module secrets are software decisions. Software
decision—-hiding modules encapsulate "software design decisions based upon
mathematical theorems, physical facts, and programming considerations such as
algorithmic efficiency and accuracy". Software decision hiding now forms the
backbone of modern object-oriented (OO) development, particularly in the form
of data structure encapsulation.

However, the most interesting proposed type of information—hiding module
consists of "programs that need to be changed if there are changes in the
sections of the requirements document that describe the required behavior".
The encapsulated secret of these "behavior—hiding" modules is the required
behavior of the software that forms the heart of the requirements document.
Unlike the other two types of secrets, encapsulation of required behavior never
caught the eye of the industry. As a result, almost everyone today has forgotten
that Parnas and Britton proposed that it could even be done.

Almost everyone.
Synergy

Ten years after the inception of the SCR Project, the paths of the author and a
member of the original SCR team (David Weiss) crossed at the Software
Productivity Consortium. It was this synergy that made the author aware of the
Module Guide and its claim that information—hiding could be applied to
requirements. Intrigued, the author began searching for a practical approach to
requirements encapsulation years after the SCR project let the idea slide. (In an
emalil to the author, Parnas indicated that requirements were not initially
recognized as a problem by the SCR team, perhaps explaining why
requirements—hiding was not more fully pursued.) The lack of a solution from
SCR may well explain why requirements encapsulation never caught the eye of
the industry.



Pursuit

It quickly became clear that devising a practical approach to requirements
encapsulation would be challenging. Consider typical requirements statements
such as:

1. The system shall compute XYZ.

2. The data base query should be cached.
3. The system shall have 99.9% availability.
4. The system shall be written in Java.

It is not hard to imagine encapsulating items (1) and (2) each in their own single
module. However, encapsulating items (3) and (4) in individual modules does not
seem possible. SCR claimed required behavior could be encapsulated. Item (4)
is not behavior, perhaps explaining the problem there. However, item (3) is a
behavioral characteristic but does not appear to be encapsulatable either. Might
the concept of requirements encapsulation be flawed? With conviction in the
validity of the SCR concept, the focus shifted to a more fundamental level. The
nature of requirements themselves came under scrutiny, starting with the
guestion "Exactly what are requirements?"

Many define requirements in general and vague terms —— "What the system
shall do, but not how it shall do it." (ubiquitous)

Some use a more legalistic definition, such as "A capability that must be met or
possessed to satisfy a contract or specification." (IEEE Standard Glossary type
of definition).

A few enumerate selected parts of the software, such as "Requirements are the
interface to users, external systems, and the hardware." (Brooks, No Silver
Bullet paper).

One person (I do not recall exactly who) drew a dotted circle on the back of an
envelope then, motioning to the outside of the circle, said enigmatically,
"Requirements might be out here somewhere."

Many authors do not state a definition at all, either content the term is self-
explanatory or, perhaps, too wise to tread into a minefield.

It soon became apparent that there indeed was a problem concerning the
definition of requirements. The fact that different people gave such widely
differing definitions, and the fact that most of the definitions were very vague or
non-specific, was symptomatic. The bottom line was, and still is:



The industry has no precise definition of requirements, and no
consensus, even at a vague level, on what requirements are!

Clearly, one cannot encapsulate something unless one knows what it is. Before
a solution to the requirements encapsulation problem could be found, a precise
(not vague) technical (not legal) definition of requirements had to be found.

Definition

The work of the late Dr. Harlan Mills provided the critical insight. Dr. Mills, a
former IBM Fellow noted for his research on software "clean room" development
for zero—defect software, was one in the "too wise to tread" camp. Instead of
definitions, Dr. Mills employed a model upon which to base solutions to hard
software problems. He chose a well-understood model proven effective in other
engineering disciplines. This model was the concept of a "black box". While Mills
never actually said so, it was not hard to infer from his work what he thought
requirements were:

Requirements are the black box view of the software system.

The black box view of a system is precisely equal to the external interface of the
system —— by definition of a black box. The above definition of requirements is
thus equivalent to:

Requirements are the external interface of the software system.

Note that this is very close to the definition given by Brooks in his classic No
Silver Bullet paper. However, failure to recognize a black box as the underlying
conceptual model caused Brooks to include hardware interfaces in his definition,
which is incorrect. Subsequent methodology development and usage has
validated the black box definition. Requirements are precisely the software
system external interface —— to humans, to external systems, and to the external
environment. Nothing more; nothing less.

Freedom

This clarification of vision via Dr. Harlan Mills was forthcoming a year or two after
leaving the SPC for the Space Station Freedom Project (SSFP). The SSFP
Software Support Environment (SSE) standards and methods team at Johnson
Space Center —— consisting of Jeff Kantor, Ron Blakemore and the author ——
used the newly clarified precise definition of requirements as the basis of a
requirements encapsulation methodology for use by SSFP. This methodology
was documented in SSE project deliverable document #42, which evoked a bit of



wry humor —— in The Hitchhikers Guide to the Universe, "42" was the alleged
"universal answer," which aptly mirrored the team’s enthusiasm at having
cracked the requirements encapsulation problem.

After termination of the SSFP, the author, recognizing the merits of the
methodology, continued to apply and refine it. In 2002, the evolved methodology
was adopted for use on the Freedom Ship project by Chris Jacoby, Neeraj
Tulsian, Shing Lin, Travis Watkins, and the author. This variant was documented
on the Freedom Ship intranet by the author with the help of Gang Qi. In
recognition of its invention for use by Space Station Freedom and its subsequent
adoption for use by Freedom Ship, the requirements encapsulation methodology
was named "Freedom."

The definition of requirements as the black box view of the software system
leads to a complete solution to the requirements encapsulation problem. It offers
other significant benefits and guidance as well, which fully merit the name
"Freedom". The following explains how encapsulation follows naturally from the
definition, and summarizes some (but not all) of the other "freedoms" that result.

Encapsulation: Freedom to Change

Freedom recognizes a requirements specification as being the specification of
an interface, i.e., the software system external interface. Encapsulating
requirements is conceptually no different than encapsulating hardware since
they are both types of interfaces. The industry has decades of experience
encapsulating interfaces to hardware. Thus, encapsulating requirements
involves no great leap in OO technology, but does demand we clarify our
thinking regarding requirements. It is essential to recognize that requirements
are the software system external interface, by definition of a black box, and a
requirements specification is a specification of that interface.

Clarity: Freedom from Confusion

Freedom practitioners clearly understand the difference between requirements
and design information; the difference is as obvious as a black wall.
Requirements lie on one side of the wall, design on the other (the fellow who
drew the dotted circle had the right idea!) The determining criteria is external
visibility —— can a user (human or external system) see the information? Yes
equals requirements; No equals design. One by—product of clarity is
completeness. Knowing when requirements are complete is simply a matter of
knowing when the specification of the external interface is complete. Feedback
from users via a User Interface Prototype is quite effective at determining initial
requirements completeness, and when design based on those requirements
should commence.



1:1 Mapping: Freedom from Traceability

Encapsulation of requirements effectively ensures a 1:1 mapping between
individual code modules and requirements. The result is that the traditional
problem of requirements traceability becomes trivial to the point of essentially
disappearing. The time and expense of maintaining traceability maps is
eliminated, reducing development time and cost. At the same time, progress
tracking in terms of requirements implemented to date is greatly simplified and
not compromised by traceability errors, making scheduling and reporting easier
and more accurate.

Neutrality: Freedom from Design Pollution

When a user (human or external software system) sees the software, they see
the interface (the requirements), including a "look and feel" or protocol, controls
and/or valid commands that can be issued, and responses that come back. They
do not see code modules (the design and implementation). The users do not
know, or care, if the black box internals are built using OO, functional design,
expert systems, or even burned into silicon. Since requirements contain no
information beyond what the users (human and external software systems)
perceive, they contain no information about the design or implementation.
Hence, black box requirements are design—neutral and implementation—neutral.

Formality: Freedom from Documents

Freedom recognizes that formal documentation exists to serve customer needs,
not a methodology. With the sole exception of a user manual, required for any
software with a human user interface, Freedom does not specify generation of
formal documentation. No requirements document, no design document, no test
plan document, and so forth means no effort wasted on book publishing.
Freedom does insist that technical files for these work products be developed,
but these need not be publication quality simply for methodology’s sake. Product
guality does not depend on formal presentation of information, only on
information content. Content in files or in a data base is quite sufficient, and even
superior to published document formats since raw machine readable data is
more easily subject to automated checks than the same data in publication
format. However, customer needs govern. If the customer requires formal
documentation for project monitoring and tracking or other purposes, and is
willing to pay for it, then Freedom can easily accommodate the need. Freedom
has no need of formal books beyond the needs of the customer.



Interface—Centricity: Freedom from Scenarios

Use Cases are diagrams depicting use of the system. Use of the system is a
specification of a process, which is quite different from a specification of an
interface. Thus, by definition, Use Cases do not specify requirements, as widely
claimed. Use Cases may comprise the main body of a user manual, or serve as
supplemental material in the appendix of a requirements document (should
formal documentation be produced), but they are not appropriate in the main
body of a requirements document because Use Cases, usage scenarios and
other process—centric notations do not specify requirements. Because black box
requirements are interface—centric, Freedom incorporates two new and effective
techniques for specifying external interfaces to record requirements. These
techniques are Functionality Trees, which identify and organize stimuli, and
Behavior Tables, which specify responses to the stimuli.

Development: Freedom from Unnecessary Effort

Many developers ignore the external interface until near the end of the project.
For requirements, they use things like Use Cases, CRC Cards, Data Flow
Diagrams, Statecharts, or one of dozens of other techniques. In so doing, they
expend an amount of work (R). Later, they get around to specifying the external
interface, because without it the software would be useless, expending an
amount of work (I). In contrast, Freedom recognizes that specification of the
external interface IS requirements, and expends the amount of work (1) up front
and in lieu of (R). Hence, Freedom beats current methodologies by the time and
cost that other approaches expend performing the unit of work (R), minus
whatever part of (R) they may fortuitously devote to specification of the external
interface (usually very little).

Maintenance: Freedom to Evolve

In addition to the development savings above, Freedom'’s ability to encapsulate
requirements continues to pay dividends throughout the life of the software (if
OO design and implementation are used; recall Freedom requirements are
neutral and do not dictate OO). With current approaches, requirements changes
are difficult to back fit into the code. Encapsulating requirements makes
requirements easier to change in the same way that encapsulation of data
structures makes data structures easier to change. Both contribute to a
decrease in the life—cycle cost of the software. Hence, Freedom calls the post-
release activity "Evolution” to emphasize ease of enhancement of requirements,
rather than the traditional "Maintenance," which connotes bug fixing. Since
maintenance costs are widely recognized as comprising as much as 80% of the
life—cycle cost of an application, the post—-development savings of requirements
encapsulation can be expected to dwarf the development savings (which are in



and of themselves sufficient reason to use Freedom).
Silver?

For the above reasons, and others not covered here, it is likely that no other
methodology can beat Freedom for cost efficiency, except an improved version
of Freedom itself. Long after Freedom becomes widespread it will continue to
improve, leading to ever greater savings. Might requirements encapsulation be
the key to the elusive "silver bullet" of Brooks —— reductions in the cost of
software comparable to that traditionally attained by hardware? Founding
software engineering on the same conceptual model used by hardware
engineers, the black box model, offers a promising point of departure.

More information on requirements encapsulation and the Freedom methodology
is available on the Freedom web site at http://www.jreality.com/freedom/

References

"A-7TE Software Module Guide," by K.H. Britton and D.L. Parnas, Naval
Research Laboratory, NRL Memorandum Report 4702, December 8, 1981.

"No Silver Bullet —— Essence and Accidents of Software Engineering," by
Frederick P. Brooks, Jr., Computer, Vol 20 No 4, April 1987, pp 10-19.



