The First Agile Slugout:
eXtreme Programming versus Freedom

by
Rick Lutowski
rick@jreality.com

Version 2003-0929

Copyright (C) 2003 LDJ Trust
Some rights reserved.

This work is licensed under the Creative Commons Attribution—NoDerivs
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by—nd/1.0/ or send a letter to Creative
Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Contents

ACKNOWIEUAGMENTS....euiiiiiiitiiieeiiesses eeeeseeeeennnnnnes 4
(] = (0T 5
PrE—GaAME. .. e 9
AGIIE e 10
X e 14
(=TT 0 (0] 1 o F 15
AGIE SIUGOUL.....eeeiiiiiiiieeeeees e e e e e e e e e e eeaeeas 18
0 101 T 0 19
0 101 Lo 22
0 101 Lo 1 T 26
0 101 T 28
0 10T L0 1 T 32
0 10T Lo I T 35
0 101 Lo I 38
0 10T Lo I T 42
o 10T Lo 1 45
0 101 T 1 50
0 101 T 0 5 54
0 101 T 1 58
P OSI—GaAMIB. e 60
Freedom INTEIVIEW.......oo.ieeeeeeeee et 61
D o 101 (= VA L 7 63
R CAD . e 65
R (ST 16T <T T PT 70
Alphabetical INAEX.........coouviiiiiiiie e 71

Acknowledgments

Thanks are extended to the following individuals for their assistance
in reviewing this material:

Cristof Falk

Derek Lane

Preface

The Alliance and the Werewolf

One one hand, the recent Agile software movement is good. The
Agile Alliance offers a central forum for discussion of software
methodology, a subject which for a time fell into near—disrepute.
Thanks to the Alliance, software methodology is now reacquiring a
measure of respect.

On the other hand, the framers of the Agile movement have taken
an almost revolutionary stance with respect to methodology. The
Agile Manifesto and Principles appear to have been drafted with the
most eXtreme (sic) of methodologies in mind. At the same time,
some Principles are so narrowly defined as to be inapplicable to
larger software projects, which are most in need of methodological
solutions. Given that the methodologies of the 1980’s failed to slay
Brooks’ werewolf, the hope appears to be that within the newly—
stated principles may lurk a silver bullet, or at least a solid leg trap.
Regardless of their shortcomings, the Principles do offer a fresh
perspective on the problem. Certainly, the very act of an industry
group formally proposing methodological principles is without
precedent, and is a step forward on the track of the werewolf.

Three decades of in—the—trenches software development has
caused a rather profound change in my own perspective as well. |
now believe that the problems to which the Agile Alliance seek
solutions, in fact, have solutions. | no longer believe those who
thoughtlessly quote Brooks by wailing "there is no silver bullet.”
Software developers around the world now slay the old werewolf
daily using Internet—-based open source software development, a

5

silver bullet unimagined by Brooks* in the mid—1980’s. Ironically,
precious few are tanning the hide, choosing instead to dance with a
live werewolf and inevitably be bitten yet again and again. It appears
a phenomenon that Brooks could not have anticipated has occurred:
a silver bullet has been found but, due to its being so different from
traditional practice, is being ignored by the mainstream. Do we
really expect silver bullets to fit the mental mold of leaden ones?
lllogically, many apparently do. In any case, the question is not "is
there a silver bullet,” but "where is number two?" After all, if there is
one silver bullet there may well be two.

! Those who doubt that open source development is a silver bullet are
encouraged to re-read Brooks to ascertain his definition of "silver bullet."
(http:/mwww—inst.eecs.berkeley.edu/~maratb/readings/NoSilverBullet.html)

6

Where Is Number Two?

Although there is not yet a second silver bullet, its mold may exist.
This mold, like many of its kind, has two halves. These two halves
were forged in the research crucibles of Dr. David Parnas and Dr.
Harlan Mills over 20 years ago. It remained only for someone to fit
the halves together. The crucial integration was accomplished over
10 years ago on the NASA Space Station Freedom Project, and the
Parnas—Mills integration technique has been undergoing slow but
steady refinement ever since. In the last two years its evolved form
was documented in the context of the Freedom Ship project, and the
more streamlined shape granted a name: Freedom.

That Freedom may be the mold for a second silver bullet was hinted
at by the newly—stated Agile Principles. To explore this in more
depth, a comparison was carried out between Freedom and the
most pervasive current Agile methodology, XP, using the Principles
themselves as the comparison criteria. This work documents that
comparison. Inthe process, it also suggests improvements to those
Principles which appear to have been too narrowly formulated.

The results of the comparison are, to me, surprising. They cast
Freedom in a new light relative to the expanding stable of Agile
methodologies. If Freedom is the mold for a second silver bullet,
one or more of the new Agile methodologies may be the mother lode
of silver for the bullet itself. But even that combination will not be
enough. Contrary to standard Agile dogma which discounts tools in
favor of people, high—powered, methodology—specific automation
will be essential to fire the resulting bullets at sufficiently agile
speeds.

With two bullets in the magazine instead of one, enough projects
may be able to slay the werewolf to finally secure the software
development landscape. As taught in basic training, it is more
effective to double tap the target. That is never more true than when
the target is a werewolf.

Why the Metaphor?

Rigorous comparisons of agile methodologies are, so far, rare.
Although one might expect such comparisons to be a major formal
activity of the Agile Alliance, only one comparison paper appears to
exist in the Agile Library. That paper, "Agile software development
methods, Review and analysis" by Abrahamsson, Salo, Ronkainea,
and Warsta, is a comprehensive review and comparison of 10 agile
methodologies. Interestingly, their comparison does not make direct
use of the 12 Principles that officially define "Agile." However, the
review and comparison is quite systematic, which inevitably leads to
rather dry and tedious reading. The considerable value of the
content is thus diluted by the mind numbing process of encountering
a seemingly endless stream of facts. One is inclined to jump to the
Conclusion and skip the details.

Unfortunately, in comparisons especially, the meat is in the details.

This work attempts to avoid these two shortcomings of the "Review
and analysis" paper. First, the 12 Agile principles are directly used
as the methodology comparison criteria. Second, a rather zany
metaphor is used as a narrative backdrop for recording the
comparison in an effort to encourage actually reading the details.
That this is an experiment in technical topic treatment is undeniable.
Its effectiveness, even its suitability, is uncertain. However, the
worst one can do is simply stop reading it, which is no ground lost
compared to the dry traditional approach.

A shortcoming of this work compared to "Review and analysis" is
scope. Whereas the latter compares 10 methodologies, this work
compares only two, one of which is not even recognized by the
industry. However, the comparison conclusions are quantitative with
respect to agility, offer insight into the relative strengths of the
compared methodologies and, perhaps most importantly, indicate
that maximum agility may be best achieved via interplay among two
or more methodologies in addition to interplay among people.

Pre—Game

Agile

Reviewing the Rules

Howard: Welcome sports fans! This is Peter, Howard and Don, the
PHD team, bringing you the first methodology slugout under the new
Agile rules. Don, tell us about the new rules. What is Agile?

Don: The new rules come from the Agile Alliance, an organization of
individuals united by a common goal of "uncovering better ways of
developing software." Their definition of "better" is summarized in a
Manifesto of four items, supported by 12 specific Principles. The
four items of the Manifesto for Agile Software Development are
(http://www.agilemanifesto.org/):

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

10

Kent Beck James Greening Robert C. Martin

Mike Beadle Jim Highsmith Steve Mellow
Air van Biennium Andrew Hunt Ken Stewier
Alistair Cockburn Ron Jeffry’s Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marci

(C) 2001, the above authors
this declaration may be freely copied in any form,
but only in its entirety through this notice.

Howard: That sounds like a pretty big change from all those thick
documents that used to govern software development, at least on
paper. Remember how everyone always used to ignore them?
Maybe by replacing thick document-based methodologies with
simpler rules and principles, folks will be more inclined to pay
attention to them. Don, tell us more about the 12 Agile Principles.

Don: The 12 Principles (http://www.agilemanifesto.org/
principles.html) can be organized by the Manifesto items they most
directly support. When organized by the Manifesto groups which
they most closely represent, the Principles are:

Individuals and interactions over processes and tools

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.

Agile processes promote sustainable development.

The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

11

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts
its behavior accordingly.

Working software over comprehensive documentation
Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter time scale.

Our highest priority is to satisfy the customer

through early and continuous delivery

of valuable software.

Working software is the primary measure of progress.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity——the art of maximizing the amount
of work not done—-is essential.

Customer collaboration over contract negotiation
The most efficient and effective method of
conveying information to and within a development
team is face—to—face conversation.

Responding to change over following a plan
Welcome changing requirements, even late in

development. Agile processes harness change for
the customer’s competitive advantage.

12

Howard: Those Principles seem to make a lot of sense, Don. OK,
can you tell us a little about the contenders?

Don: Sure, Howard. Inthe near corner we have eXtreme
Programming, popularly known as XP, the current lightweight
champion. Facing him today is Freedom, a 12 year veteran of the
space program, trimmed down to compete in the lightweight
category.

Howard: Under the new rules, victory will go to the most Agile.

Which will that be —— the current industry champ XP, or the veteran
challenger Freedom?

13

XP

The Current Champ

Don: Maybe we can tell more about each contender’s chances in
this slugout by taking a look at their bios. Here’s what the official
eXtreme Programming web site says about the current champ
(http://www.extremeprogramming.org/what.html):

(Permission has not yet been granted to reproduce the "What Is
XP" web page content. here. Please see the above web address
for an overview of XP.)

Don: What the official bio doesn’t say is that eXtreme Programming
has been criticized as being incapable of scaling to really big jobs in
government and large corporations. What do you think, Howard?

Howard: Well, it is a lightweight. Some of its moves are pretty
nimble, though, and should be effective on any size job. Certainly
communication and courage are important qualities as the job gets
bigger. Of course, bigger jobs are inherently more complex, so
simplicity may be hard to achieve on really large and involved
projects. What do we have on the challenger, Don?

14

Freedom

The Challenger

Don: We really don’t know much about Freedom, Howard. Heard
he’s spent the past 12 years on private projects. Rumor is, he has a
100% success record. Not sure it | believe that or not! Here’s what
the Freedom bio on the web says
(http://www.jreality.com/freedom/index.html):

Freedom is a software development methodology
originally developed for the Space Station Freedom
Program, hence the name "Freedom". Since its inception
in 1990, Freedom has been proven effective in use on
internal projects for organizations such as NASA,
Freedom Ship International, Object Access, and JReality.
Authorization for public release of the methodology was
granted by NASA in April of 2003.

The goal of Freedom is to reduce the life cycle cost of
software by leveraging information—hiding as defined by
Dr. David Parnas and the Software Cost Reduction
Project. Most notably, Freedom achieves the previously
unrealized goal of encapsulation of software
requirements in objects to enhance ease of change of
requirements.

In achieving this goal, Freedom draws heavily upon the
work of the late Dr. Harlan Mills to precisely define

15

requirements as an aid to their encapsulation. The
precise definition of requirements has many benefits
beyond requirements encapsulation such as design
neutrality of requirements, elimination of requirements
traceability as an issue, creation of reusable
requirements components at the code level, and Quality
Requirements that guide infusion of quality into software
in a systematic and consistent manner.

Freedom achieves its software cost reduction and quality
enhancement goals via technical solutions, particularly
an emphasis on software interfaces. Freedom is an
interface—centric technical development methodology,
not a software management methodology. Because
Freedom is management—neutral, it can be used with
many different risk management life cycle models
including spiral, incremental, evolutionary, early release,
frequent release, prototyping, and other management
models to reduce risk in a manner appropriate to the
project and customer.

Being interface—centric leads naturally to Freedom being
customer—centric as well. The Freedom process
specifies that the external user interface code be written
first, and a User Interface (Ul) Prototype be delivered to
the customer extremely early in the development
process. The Ul Prototype helps the customer verify the
correctness and completeness of the requirements,
which are themselves defined in an interface—centric
manner consistent with the work of Mills and Parnas.
Freedom’s Quality Requirements further enhance its
customer—centric nature by servicing the customer’s
needs for software quality (i.e., "service—oriented") at
each step in the development process.

In summary, Freedom produces lower cost, higher
guality software by being

16

interface—centric —— applies information—hiding to
requirements,

customer—centric —— involves the customer in specifying
and verifying requirements,

service—oriented —— continuously services customer
needs for quality at each development step,

management—neutral —— pairs with most any software
management methodology or process.

The net result of using Freedom is higher quality
software delivered to the customer sooner, and software
that is less costly to enhance when adding or modifying
required capabilities.

Howard: Parnas and Mills —— sounds like Freedom has been honed
by some of the best. | suppose adaptability to diverse management
styles is what you’d expect, coming out of the space program. But
encapsulation of requirements in objects? Elimination of
traceability? Systematic infusion of quality? Come on! Not even a
champion heavyweight can do all that. Sounds like typical
contender bravado to me, Don.

Don: I'll have to agree with you there, Howard. This Freedom
challenger sounds more like smoke than sinew. If so, XP is going to
lay him flat in short order. Well, the ref is motioning the contenders
into the ring. The slugout is about to begin!

17

Agile Slugout

18

Round 1

Businessman—-developer cooperation

Howard: We’'re ready for round 1. The winner of round 1 will be
decided by best conformance to the first of the 12 Agile Principles,
Businessman-developer cooperation:

Business people and developers must work
together daily throughout the project.

Don: Here they come, Howard, and XP is coming out swinging! XP
is throwing its "Daily Stand Up Meeting" punch. The stand up
meeting is when the entire team gets together briefly every morning
to discuss the latest issues. The meeting includes the business
people assigned to the project.

Howard: Look at Freedom, he’s backing off! Freedom’s coach is
going to the ref. What's he telling the ref? Maybe Peter, our
ringside reporter, can tell us what's going on.

Peter: This is Peter at ringside. Hang on, Howard, while | get closer
to the conversation between the ref and Freedom’s coach... Wow!
Get this. The coach is petitioning the ref to nullify this round
because Freedom is strictly a technical methodology, and getting
different types of people working together is a management-related
principle. The coach is claiming this principle is addressed by
whatever management methodology is selected for use in concert
with Freedom, but Freedom has not been assigned a management
methodology partner here today. So the round should not count.

19

Howard: Unbelievable! Thanks, Peter.

Don: | knew it, Howard. Freedom is all smoke. XP is beckoning
Freedom to get in the middle and fight.

Howard: The ref is agreeing with XP, and is telling Freedom to get in
there. There he goes. Ouch!

Don: XP is really beating up Freedom on this one, Howard. Look,
Freedom isn’t even trying to throw a punch. | guess he really
doesn’'t have much in the way of management moves. Freedom is
deferring the whole issue to XP. Oww!

Howard: There’s the bell. End of round 1. Freedom is going to the
ref again. He’s claiming that if this were a fair fight, he'd be paired
with a specialized management methodology which would have
knocked XP down on this principle, so the decision should go to
Freedom. Sounds like there could be some logic to that, Don.

Don: Maybe so, Howard, but the ref isn’t buying it. The ruling is that
this match is XP against Freedom straight up. Here’s the signal ——
round 1 to XP!

Howard: I'm wondering what the outcome would have been had this
been a tag team match. If Freedom is really trained to operate as
the technical member of a technical-management methodology pair,
the combination of two specialized methodologies could be really
formidable. How would XP fare in a methodology tag team match?

Don: Well, Howard, XP is a stand—alone methodology. It has both
technical and management moves. It may resent having to share its
corner with another methodology. To do so would be to admit either
its technical or management jabs could be inferior to something else.
Most of these methodologies are pretty pugnacious and don't like to
share turf, Howard.

Howard: But apparently not Freedom. He looked absolutely wimpy

20

in there against XP’s Stand Up Meeting punches. I'll bet Freedom
would have welcomed the help of a partner methodology in fostering
technical and business team communication. One thing’s for
certain; these two contenders are certainly different!

Don: Right! But in this straight up bout, the differences have so far
been to XP’s advantage. Ok, | think we are about ready for round 2.

21

Round 2

Developer trust

Howard: Start of round 2. Round 2 will be decided by best support
for Agile Principle 2, Developer trust:

Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.

Don: They’re back at it again! XP is throwing lots of quick jabbing
management punches, but this time Freedom is fighting back.
Looks like Freedom is rearing back for a big technical punch.
Wham!..square in the jaw with a powerful chop I've never seen
before. XP is reeling from that one! XP has recovered a bit and is
starting to throw those quick management punches again. Howard,
tell us about those XP moves while | investigate that thunderbolt
Freedom just threw.

Howard: Ok, Don. It seems XP is relying on combinations of
Moving People Around, Release and Iteration Planning, and even a
few Fix XP When It Breaks jabs to show that it gives developers the
flexibility to get the job done without rigidity of management or
planning getting in the way. But Freedom is just rolling with those
punches, basically accepting them, while sneering back at XP.
Peter is down at ringside. Peter, can you hear what Freedom is
saying?

Peter: Yes, Howard. Freedom is taunting XP, saying that XP isn’t

22

even hitting the target. He’s chiding that these XP moves are all
management control related and just show that XP doesn’t really
trust developers to get the job done without lots of management
controls. Also, the fact that the XP Map, which is XP’s process
chart, has to be followed rigorously is more proof of management
control that gets in the developer’'s way. Even Fix XP When It
Breaks is a controlling process that has to be followed to change the
process. Freedom is really waving the red flags at XP, Howard, like
a matador baiting a bull.

Howard: Oops! XP responded to all that with a Pair Programming
punch. Freedom just rolled with that, too. All these management

jabs don’t seem to be fazing Freedom on this principle. Don, what
did you find out about that big Freedom punch... better tell us now
because | think he’s getting ready to throw it again!

Don: Here’s the scoop, Howard. Freedom is relying on a nearly-
forgotten jab exhibited by Parnas in a 1986 paper called "A Rational
Design Process: How and Why To Fake It".
(http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/FAKE-
IT.doc) Parnas claimed that rational processes are impossible to
follow rigorously, so do not try. Rather, developers should be free to
do whatever they need in order to produce the desired work
products. The only caveat is the products they produce must be the
same as would have been produced had it been possible to follow
the rational process rigorously. The idea is that rational processes
do not exist to control people, but to more clearly define the nature of
the work products expected.

Howard: Interesting! A purely technical approach to what most of
us, including XP, assume is a management problem. No wonder
Freedom is just shrugging off all those XP management punches.
Now let me see if | understand this —— Freedom is using it's own
process chart as a technical definition mechanism, not a behavior
control mechanism. Does that mean developers are free to ignore
the Freedom process charts?

Don: Just so long as the work products they create are the same as

23

what following the process rigorously would have produced.
Developers can perform process steps in any sequence they desire,
repeat steps in order to experiment, or even invent their own steps
or processes to produce the needed work products. This only
applies to the Freedom technical process, though. The companion
management process still has to be followed rigorously because
management processes are intended to control people. But, as we
already saw, Freedom is not a management methodology, so has no
management processes with which to control anyone.

Howard: Wham! Freedom just plastered XP with that punch again!
XP is dazed and moving into its corner. Just in time, too, because
there is the bell ending round 2.

Don: Look! Now XP is petitioning the ref. Peter, what's he saying?

Peter: This is Peter at ringside. XP is saying that Freedom shouldn’t
be allowed to do non-standard things like apply technical semantics
to process charts to solve a management problem! Almost sounds
like the same sort of ploy Freedom tried in round 1.

Howard: Yeah, and it's working about as well. The ref isn’'t buying
this one either. He’s saying that since Freedom has no people
control rules, it wins the "Developer trust” principle hands down. The
Parnas "Fake it" philosophy clinches the case since Freedom’s
process charts also do not imply lack of trust in developers but, if
anything, further empowers the developers. Round 2 to Freedom.
We now have a tie match —— XP 1, Freedom 1.

Don: Of course, we also know that Freedom doesn’t usually operate
alone, Howard. Normally, there is going to be that management
methodology lurking in the background constraining the
developers....

Howard: True, but remember —— this is a one—on—one bout, Don.
XP versus Freedom only.

Don: Right.

24

Howard: You know, Don, XP could also apply the Parnas "Fake It"
approach to its own process charts. That would help it stand up to
Freedom on this "Developer trust" principle.

Don: It's not quite that easy, Howard. Remember XP is a
combination management-technical methodology. Look at the XP
Map and you’ll see most of the processes are management related;
they deal with things like planning sessions, stand up meetings, etc.
Management charts are useless if they are not followed rigorously
because their only purpose is to control people. It may, in theory, be
possible to apply the "Fake It" approach to the technical part of the
XP Map, but XP process charts interleave technical and
management tasks so tightly as to make segregating them very
difficult. It would require a big revision to XP, Howard. It's highly
doubtful if XP’s coaches would even consider it.

Howard: Then it sounds like Freedom is going to continue to clobber
XP on the "Developer trust" principle every time they meet.

Don: It would seem so, Howard.

25

Round 3

Sustainable development

Howard: We are ready for the start of round 3. Round 3 will pit XP
and Freedom against each other for best support of Agile Principle
3, Sustainable development:

Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

Don: The two contenders are approaching the center of the ring for
the third time. Not surprisingly, XP is limbering up to throw its "No
Overtime" punch. Meanwhile, Freedom is extending his glove to...

Howard: | don’t believe it!

Don: ...to shake hands!! Howard, Freedom wants to shake hands
with XP on this principle!

Howard: Ooof! XP let Freedom have right between the eyes!
Doesn’t look like XP wants to shake hands, Don.

Don: | wouldn’t think so, Howard. XP is really ticked after loosing
round 2... "cheated out" of round 2 is what Peter overhead at
ringside. XP is out for revenge, Howard.

Howard: XP isn't content with just "No Overtime" punches, either.
Now he’s starting to mix in some "lteration Planning" jabs as well.

26

Freedom has gone into defensive mode. Why isn’'t Freedom hitting
back?

Don: Well, Howard, Sustainable development is another
management principle...

Howard: Oh! Yeah. Looks like Freedom is in for another beating,
Don.

Don: And he’s getting it too, Howard. Under the circumstances,
he’s taking it pretty well, but the bruises are mounting. Freedom is
looking back at his corner for his management methodology partner,
but of course there isn’'t one there for him today.

Howard: There’s the bell. End of round 3. No question about who
won this round, Don.

Don: Look! Freedom is offering to shake hands with XP on the
"Sustainable development" principle again, Howard. XP is just
ignoring him.

Howard: There’s the official signal from the ref. The score is now ——
XP 2, Freedom 1.

27

Round 4

Self-organizing teams

Howard: Round 4 will be decided by which contender best supports
Agile Principle 4, Self-organizing teams:

The best architectures, requirements, and designs
emerge from self-organizing teams.

Don: Hey, look! Freedom'’s coach is talking to the ref. We’'ll switch
to ringside and see if Peter can tell us what's going on. Peter...?

Peter: That's right, Freedom’s coach is in conference with the ref.
Looks like a pretty heated discussion... Now the conference is over,
and Freedom’s coach doesn’t appear to be very happy. Coach!
coach! Can you tell us what you were just talking to the ref about?

Freedom Coach: Yeah. This 4th agile principle is flawed. Everyone
wants the best architectures, requirements, and designs, but self-
organizing teams by themselves are insufficient to produce them.
Those teams also need clear technical guidance on what constitutes
good architectures, good requirements, and good designs. Without
that guidance, or with poor technical guidance, the best teams in the
world will just produce crap. Heck, today XP and his followers don't
even know what a requirement is! How can they, or anyone, be
expected to produce the "best" requirements if the methodology
doesn’t give them a decent clue as to what requirements are?! | was
asking the ref to change the principle to read

28

The best architectures, requirements, and designs
emerge from rationally—defined products developed
by self-organizing teams.

Even acknowledging that self-organizing teams might be useful,
giving the teams clear, rational technical guidance on what to
produce has to come first. Principle 4 doesn’t say anything about
that. It's an incomplete principle, flawed.

Peter: You lost me coach. Sure XP tells developers what to
produce. For requirements, XP has User Stories, about 3 sentences
that describe a customer need in enough detail to cost and plan it.
And User Stories are not limited to describing the user interface,
either.

Freedom Coach: That's a great example of my point, for three
reasons. First, it is highly unlikely that one can plan anything
accurately based on three sentences! Second, the Parnas
information—hiding team stated that "Prose is the sign of an error" in
a requirements document, so XP’s use of sentences is
fundamentally erroneous. Everyone knows that prose is ambiguous,
prone to incompleteness, and unverifiable. Third, and most
important of all, requirements are "the black box view of the software
system," by definition. Harlan Mills’ work clearly indicates this. What
Is a "black box view?" Mills proposed that a black box view consists
of the stimulus—-response behavior of the software. Also, the
external interface that detects the stimuli and returns the responses
is part of the black box view. That's the sole extent of a black box
view, which is synonymous with requirements. To blither on about
anything else under the auspices of requirements just shows XP
provides poor technical guidance, which in turn leads to
substandard, if not totally erroneous, work products. There is no
way the "Self-organizing teams" principle is going to fix that and
somehow create the "best" requirements if the technical foundation
is defective.

29

Peter. Wow! That's pretty heavy stuff coach. What did the ref say?

Freedom Coach: He said that even if that’s all true, he is powerless
to change the Agile Principles. The wimp! Excuse me, the round is
about to start.

Don: Thanks for that report, Peter. Yes, the contenders are moving
back into the ring. XP is swinging with "Move people around".
Freedom is throwing the Parnas "Fake it" thrust again. Are either of
those the same as "Self-organizing teams"? Both opponents look
pretty weak this time.

Howard: Could be a problem for both of them, Don. Now XP is
dancing around with the "Fix XP When It Breaks" dodge.

Don: Freedom keeps going into a stance like he wants to flatten XP
with a "Definition of requirements” blow, but the coach must have
gotten word to him that it won’t do any good with the principle
worded the way itis. It would just be hitting below the belt.

Howard: Right, Don. If the principle were changed to read the way
the Freedom coach suggested, Freedom’s "Definition" punches
could be devastating. But with the principle stating that only self-
organizing teams create the best work products, Freedom’s
technical prowess doesn’t count. It's pretty clear now why
Freedom’s coach conferred with the ref.

Don: Both sides are lunging and dodging, but no one is connecting.

Howard: XP doesn’t seem to give the developers independent
control over their organization. XP is pretty tightly managed.

Don: And Freedom doesn’t address management issues at all. The
"Fake it" punches are not landing home as they hit on process
initiative rather than team organization.

Howard: There’s the bell ending round 4.

30

Don: Wonder who the ref will say won this one? Pretty poor
showing for both sides.

Howard: Here’s the call —— a draw! No winner on principle 4!! The
score is still XP 2, Freedom 1.

Don: | think the ref called that one right, Howard. Neither supports
self-organizing teams well, but for the opposite reasons. XP is
overly management driven, and Freedom not enough.

Howard: Right, Don. But if the principle were ever restated to
emphasize the real goal of high quality architectures, requirements,
and designs rather than an assumption about how best to attain
them, then Freedom would probably knock XP flat on this principle.

Don: If wishes were horses, Howard.

31

Round 5

Team tuning

Howard: Since no one took any blows on round 4, the contenders
are roaring to go for round 5. Round 5 will see which contender best
supports Agile Principle 5, Team tuning:

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts
its behavior accordingly.

Don: Oh, oh. This is another management principle. I'll bet
Freedom is in for another drubbing, Howard.

Howard: They're both circling each other in the middle of the ring.
There goes XP. He’s throwing the "Fix XP when it Breaks" punches,
and this time they are connecting. That's XP’s way of improving the
teams behavior, alright.

Don: But look! Freedom isn't taking it laying down this time. He’s
fighting back with "Process metric checklists!" Those aren’tin any of
our info sheets about Freedom. Peter is right on top of it though.
What have you got, Peter?

Peter: I'm here with Freedom’s coach. Coach, what are Process
metric checklists?

Freedom Coach: Process metric checklists are a very simple way of
capturing quantitative metrics for process improvement. Every time

32

a developer starts work on a new work product, be it a requirement,
design, code module, documentation or other work product, he
makes a note of the start date. When he finishes the work product,
he notes the completion date next to the start date. If he modifies
the work product, he notes the start and stop dates of the
modification. Later on, the lists can be analyzed to determine how
long each individual product, or groups of products, took to develop.
The data can be used to determine which parts of the development
process may be in need of more automation or other improvement.
They can also be used to determine individual developer
productivity, perhaps signal that a developer needs more training in
some part of the process, or whatever. A good CM tool could easily
automate this sort of record keeping, making the whole thing quite
transparent to the development team, although I'm not aware of a
CM tool that fully supports the concept at this time.

Peter: | see. But where do the checklists come in?

Freedom Coach: The list of work products with start and stop dates
are the checklists. We call them that because they look a bit like
checklists, except with actual dates instead of check marks next to
the work product entries. It may not be the best name, but that's
what Freedom calls them.

Peter. Ok. Thanks coach. Back to you, Don.

Don: Freedom seems to be getting a few licks into XP with the
checklists, but is taking some "Fix XP When It Breaks" hits in return.

Howard: XP sees it can’t get a big advantage on Freedom with the
Fix It jab, so he’s trying a different move. There’s a "Move people
around" punch! That’s not as strong a way of adjusting the process
as Fix It, but XP is looking for any edge it can get.

Don: Freedom is responding with another move of it's own. Hah!
Freedom is trying to use "Separation of technical and management
methodologies" to counter XP’s move. Clever! Turn an apparent
weakness into a strength. Since management methods are likely to

33

change independently of technical ones, separate the two concerns
to ease the impact of the change!

Howard: Trouble is, Don, that doesn’t directly address the principle
of adjusting team behavior. It's Freedom’s management
methodology partner, and not Freedom itself, that has to change to
address the principle. And that partner is not represented here
today. XP is getting through Freedom’s defense, Don. As you say,
it was a clever move on Freedom’s part, but the specific nature of
principle 5 negated its effectiveness.

Don: There’s the bell ending round 5. Both contenders took some
lumps that time! Looks like Freedom took a few more, though.

Howard: The ref agrees, Don. He's signaling the round goes to XP
on a technicality. The score is now XP 3, Freedom 1.

Don: Freedom needed that round, Howard. He didn’t get it, and
now XP is really starting to pull ahead.

Howard: That's right, Don. But I'm starting to like Freedom'’s style.
That separation of methodology concerns thing looks like it might
have some real potential. It didn’t work out just now in this head-to-
head, but give Freedom a good management methodology partner,
and he could walk away with the tag—team crown, as well as clobber
actual jobs. Any ideas who might make a good management
methodology partner for Freedom?

Don: Well, I can tell you it isn’t likely to be XP! XP would have to
give up most of its technical aspects, like User Stories and CRC
Cards, to get along with Freedom. | don’t ever see that happening,
Howard. XP isn't interested in getting along with Freedom. XP is
the champ, and he’s got a 3-1 lead. XP is out to pulverize Freedom
by the new Agile rules, and he’s well on his way to doing it!

Round 6

Frequent releases

Howard: Ok, we're ready to start round 6. Round 6 will be decided
by best support for Agile Principle 6, Frequent releases:

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter time scale.

Don: And there they go! Freedom is getting in first this time. He
knows he’s behind, and is trying to take the initiative to catch up.
He’s letting XP have it with Freedom’s "Prioritization of
Requirements" punch. Direct hit to XP’s midsection.

Howard: XP recovered quickly, and is coming right back with
“lteration Planning" punches. They’re connecting on Freedom. XP
just drew some blood.

Don: Freedom’s connecting, too. XP is bleeding. Well, we
promised you a slugout, and now it looks like we’ve got one!
Freedom is really going after XP. XP is backing up, trying to get
some room.

Howard: Now XP is starting to mix it up with "Make Frequent Small
Releases". These are connecting, too. Now Freedom is starting to
back up.

Don: Freedom’s "Prioritization of requirements” can handle short or

35

long release periods, depending on what the customer wants. So
Freedom is still holding his own.

Howard: But XP’s "frequent small releases" addresses the Agile
Principle more explicitly, Don. That may not make any difference,
though. If you meet the principle, you meet the principle, and both of
them are able to do it. Looks like a bloody standoff to me.

Don: Finally, there’s the bell. Round 6 is over, and both of these
pugnacious pugilists are headed back to their corners to catch their
breath.

Howard: The ref is ready to announce the call.

Ref. Round 6 to XP due to "Make frequent small releases" more
directly addressing the "Frequent releases" principle.

Don: Ouch! That really hurts Freedom.
Howard: You got that right, Don. Score is now XP 4, Freedom 1.

Don: Look over at ringside. Freedom’s coach is talking to Peter.
We're switching over to pick up on it...

Freedom Coach:principle assumes a priori that all customers
want and need frequent releases. This is a false assumption. For
example, government agencies which operate under complex and
rigid contracting rules may not be able to accept software developed
using a frequent release model. Even if this is not in the customer’s
best interest, these customers are nonetheless bound to contracting
laws. Until such time as the law grants them the flexibility of
conforming to Agile, Agile must adapt to these customers.
Freedom'’s flexibility with respect to life cycle model and long or short
release schedules better meets the underlying goal of this principle,
which is to meet actual customer release needs. This is yet another
poorly stated Agile Principle. Freedom therefore files a formal
protest on the "Frequent releases" principle, and on the ruling for
round 6!

36

Howard: Is he ticked, or what!

Don: He made a good point, though, Howard. Some of the Agile
Principles do seem a bit presumptuous with regard to customer
needs. Methodologies that can meet a wide variety of customer
needs appear inferior under the Principles to less flexible
methodologies that are specific to the assumptions of the Agile
Principles.

Howard: Be that as it may, Don, this bout is head—to—head based
on the current Agile Principles. Those are the rules, and the ref has
made it clear he’s not changing them. Only the Agile community can
change them.

Don: | agree, Howard, but it sure is making things bleak for
Freedom.

37

Round 7

Early and continuous delivery

Howard: We're almost ready for round 7. Round 7 will determine
best support for Agile Principle 7, Early and continuous delivery:

Our highest priority is to satisfy the customer
through early and continuous delivery
of valuable software.

Don: That sounds like "Frequent releases" all over again, Howard.
This may just be a repeat of bloody round 6.

Howard: One difference, Don, the emphasis on "early" delivery
could change things a bit. But | agree with you. There is a lot of
overlap in principles 6 and 7, so the result may well be the same.

Don: The contenders are sauntering into the ring again. Freedom is
winding up for another "Prioritization of requirements" punch, as
you'd expect. Hey, what's XP doing?

Howard: He’s got his arms up motioning for a hold. Looks like XP
might have a problem! The ref is right there telling Freedom to hold
off. XP is saying something to the ref and Freedom. Maybe Peter at
ringside can clue us in as to what's going on.

Peter: Yes, | can, Howard. XP is formally asking Freedom to
concede!

38

Howard: | guess we shouldn’t be too surprised in light of the score.
Thanks, Peter.

Don: Wow! Everyone just saw Freedom’s answer —— a massive
"Prioritization of requirements" blow to XP’s jaw! XP is momentarily
stunned.

Howard: Now he’s recovered, and is coming back with those
"lteration Planning" and "Make frequent release" punches just like
before. Looks like a repeat of round 6, like we expected. They're
both beating up on each other, each trying to prove he’s better at
"continuous releases."

Don: Yup. Looks like "frequent releases" all over again.

Howard: Oow! Maybe not, Don. Freedom just did a fast 360 spin
and nailed XP with a "Ul prototyping" hammer blow! XP flew
backward onto the ropes. Freedom is continuing to pound him with
both "Prioritization of requirements" and "Ul prototyping", but it's the
"Ul prototyping" hits that are keeping XP from recovering.

Don: Smart move, Howard. User Interface prototyping is about the
guickest way there is to get code into the the customer’s hands early
on. A Ul Prototype is just a facade for the purpose of having the
customer verify that the requirements are correct and complete, and
the interface look and feel is ok. Little or no functionality actually
works, but rule 7 doesn’t say it has to. It just says "early release."
It's hard to beat a Ul Prototype for an early release.

Howard: Having the customer verify correctness and completeness
of the requirements is critical, so Ul Prototypes serve an important

purpose even if none of the functionality works. Looks like Freedom
finally got one over on XP. XP is still on the ropes, taking a beating.

Don: There’s the bell. Round 7 is over. | think we know who won
this round.

Howard: No question, Don. There’s the call —— round 7 to Freedom.

39

The score is now XP 4, Freedom 2.

Howard: Don, can you explain why XP didn’t throw any "Spike
solutions" punches to counter Freedom’s "Ul prototyping?" Spike
solutions are really just prototypes, right?

Don: They are, Howard, but a different kind. Spike solutions
evaluate different design or implementation techniques during
implementation of a user story. A user story serves as requirements
for XP, so by the time XP implements a spike solution the team is
well past the requirements stage for the Release. Also, spike
solutions are not intended to be delivered to the customer, whereas
a Ul Prototype is. So spike solutions would not have helped XP in
demonstrating support for the "Early and continuous delivery”
principle.

Howard: Ok, but couldn’t XP deliver a Ul Prototype early also?

Don: A Ul Prototype does not match XP’s paradigm. The two
methodologies have fundamentally different notions of requirements.

For Freedom, requirements are "the black box view of the system,"
meaning the software external interface and its stimulus—-response
behavior. Freedom first delivers a Ul Prototype in which little or
nothing works but which implements part of all of the user interface.
This permits the customer to verify correctness of the human user
interface, which remember is at least partially synonymous with
requirements to Freedom. The Ul Prototype can be delivered and
evaluated in increments if the Ul is extensive, which gets Ul code to
the customer even faster. Once the user concurs the requirements
are ok, Freedom delivers functionality in increments of "stimulus
sets", which are collocated groups of stimuli in the user interface. So
a Ul Prototype follows naturally from Freedom’s interface—based
approach, and also serves as a code framework for implementation
and delivery of functionality.

For XP, requirements are User Stories. XP implements and delivers
the system in increments of User Stories, which are process—centric,

40

not interface—centric. A Ul Prototype may not match any XP User
Story. Also, a Ul Prototype implements no actual functionality.
whereas a User Story always has some associated functionality. Ul
Prototypes simply do not match XP’s approach, so XP does not use
them.

Howard: Thanks for clarifying that, Don. These two contenders are
really different!

41

Round 8

Software progress

Howard: We are almost ready for round 8. Round 8 will determine
which methodology best supports Agile Principle 8, Software
progress:

Working software is the primary measure of progress.

Don: Peter has Freedom’s coach on the mike again. Let’'s switch
over to hear what he has to say.

Freedom Coach: This principle is a backlash against document
driven methodologies, which have had their share of problems in the
past. While Freedom concurs that working code is a better measure
of progress, we would also like to point out that this principle fails to
take certain realities into account. Freedom considers producing
code without accompanying requirements, designs, test cases, and
user manuals to be a sign of lack of appropriate progress, and even
a project out of control. Thus, this is another poorly framed Agile
Principle. For the record, we suggest it be changed to state

Working software, with accompanying customer—approved
requirements, designs, tests, and user documentation,
is the primary measure of progress.

That being said, Freedom will still win this slugout in spite of the
dubious wording of this and other Agile Principles.

42

Peter: Ok, coach. Back to you, Don.

Don: The Freedom team clearly thinks the Agile deck is stacked
against them. Given that, and their being down 4-2 this late in the
match, it's pretty bold of him to think that Freedom can still pull this
out.

Howard: It's not over until it's over, Don. The contenders are back
in the ring. Round 8 has started.

Don: They are both coming out swinging. Freedom is throwing its
"Process Metric Checklists" punch again.

Howard: XP is countering with "Project Velocity". Don, can you
explain Project Velocity?

Don: Sure, Howard. Project Velocity is sum of the time estimates
for all the User Stories to be implemented in a given XP iteration. It's
the estimated time to implement the code for an iteration, which is a
collection of User Stories.

Howard: And we have seen that Freedom checklists are the actual
start and completion dates of various work products including, but
not limited to, code.

Don: Right, Howard. And both sides are scoring with these
punches, because they both include code as a measure of progress.

Howard: One difference, Don. Freedom’s checklists measure
actual time to implement, whereas XP’s Project Velocity is estimated
time. | would think that actual time is a better measure than
estimated time. Also, the checklists record metrics for "working"
software, whereas Project Velocity is just an estimate for planned
software, not working software.

Don: On the other hand, Project Velocity measures only code, so
code is the "primary" measure for XP, whereas Freedom measures
all work products, so code is not a "primary" measurement for

43

Freedom. | think this is what the Freedom coach was complaining
about just before the round started. So the word "primary" in the
principle could work against Freedom, even though Freedom’s
measurement approach is more comprehensive and the metrics are
more accurate.

Howard: Neither is gaining an edge on the other, Don. Their moves
seem to be pretty evenly matched in the ring. Looks like this is
going to be a judgment call for the ref.

Don: | agree, Howard. There’s the bell ending round 8. XP and
Freedom are heading back to their corners to cool down. Looks like
the ref is reaching for his Agile Principles book. He knows he’s got a
tough call.

Howard: I'll bet he rules it a draw, Don.

Don: Here goes. The ref is about to announce his decision.

Ref. Because XP views software as the "primary" measure of
progress, round 8 goes to XP.

Howard: Look at Freedom! He’s slapping the mat with his towel!
Freedom’s coach is beating his fists on the wall with an "I knew it!"
look on his face. They saw this coming, Don.

Don: Ithink so, Howard. They obviously feel that Freedom has a
better approach to measurement, but they got shafted anyway.

Howard: Tough call. Score is now XP 5, Freedom 2.

Don: XP is grinning like a Cheshire cat.

Round 9

Technical excellence

Howard: Round 9 coming up. Round 9 will pit XP versus Freedom
based on Agile Principle 9, Technical excellence:

Continuous attention to technical excellence
and good design enhances agility.

Don: Technical excellence and good design! This is obviously a
really important principle. |think we’ll see a real slugout to bag this
one, Howard!

Howard: Both will clearly want to demonstrate their superiority here.
After that round 8 call, I'd expect Freedom to be really boiling to win
this "Technical excellence" round. Remember, Freedom is
supposed to be a technical methodology. What does Freedom use
to promote "good design”, Don?

Don: For design, Freedom uses two main notations —— Object
Model Tables (OMTs) and Abstract Interface Specifications (AIS).
An OMT captures the object model for an object—oriented design. It
has basically the same information as a UML Class Diagram except
Is tabular in nature rather than being a node—arrow diagram.
Freedom proponents claim that tables are easier and less expensive
to create than node—arrow diagrams, and tables are also highly
amenable to consistency and completeness checking. They say
these properties make OMTs lighter weight and more effective for
use in actual design than UML Class Diagrams. An AIS records the

45

design of the interface for one code module or class. The concept
was originally invented by the Parnas information—hiding team, and
adopted with some refinements by Freedom. Freedom practitioners
claim that AIS’s can be used as a basis for tools to automatically
generate code, test cases, and even documentation from the AIS
design. So far, such tools remain to be written for modern
languages such as Java, although there is an instance of AlS auto-
generation tools having been written for an earlier language.

Howard: Interesting. And how about XP?

Don: XP uses a notation called CRC Cards for design. CRC stands
for Classes, Responsibilities, and Collaborators. CRCs are literally
cards —— like 3x5 index cards —— used to record information about
each class of an object-oriented design. The technique was
invented by Kent Beck & Ward Cunningham. Incidentally, Beck and
Cunningham are also the inventors of XP, so CRC cards and XP are
pretty tightly bound together.

Howard: | guess we’ll be seeing those techniques in this round,
which is just about to start.

Don: Yup, here they come. Freedom has a fierce scowl, and XP is
almost gloating. Both are remembering round 8, Howard.

Howard: Well, this is a new round, Don.

Don: XP has started by lashing out at Freedom with CRC Cards.
Freedom is retaliating with Object Model Tables and Abstract
Interface Specs. XP has dropped back momentarily, but now is
advancing with Spike Solutions. Freedom has matched that with
Partial Functional Simulations, which is a more formal name for the
same design prototyping idea. Now Freedom is mixing it up with
Canonical Design Architecture punches.

Howard: Canonical... what?

Don: With Freedom, all software designs follow the same high level

46

design architectural pattern. Canonical just means all software
designs can follow this pattern. The pattern is based on the different
kinds of information—hiding modules, as categorized by Parnas and
his information—hiding discovery team.

Howard: Freedom sure is pulling a lot of rabbits out of old hats.
Seems to be working, though. XP has nothing to counter it. XP is
taking severe architectural hits and is backing off. Now XP is trying
to regain ground by muscling in "Coding Standards."

Don: Freedom easily countered that with its "Coding Style Guide",
same thing by a slightly different name. XP couldn’t regain any
ground with Coding Standards. He’s still having to back down under
Freedom'’s repertoire of technical punches.

Howard: XP isn't done yet. Now he’s trying to regroup with
"Refactor Mercilessly". That's XP’s way of saying to continually
rewrite the code to improve the design.

Don: Wow! Freedom must have been waiting for that. Freedom
responded with an avalanche of "Software Decision Encapsulation”
and "Hardware Interface Encapsulation” punches. Encapsulation,
basically just another name for information—hiding, means to write
the code so that is easy to change. That not only permits
refactoring, but anticipates it to make refactoring easier. XP is
backed up to the ropes now, Howard.

Howard: XP may be on the ropes, but he’s still got some moves left.
Now XP is trying to hide behind "A System Metaphor", an XP
concept that helps makes the design easier to understand.

Don: Freedom responded with of "Definition of Design", and
"Definition of Implementation”, which is central to understanding
what information constitutes design, and which constitutes
implementation. Metaphor got XP up from sagging on the ropes, but
Freedom’s Definitions are keeping XP from gaining any
maneuvering room. XP is still cornered in by the ropes.

a7

Howard: Now it looks like Freedom is going into a stance for a
completely different punch. He’s delivering it.... Holy cow! A real
devastator!! XP trampolined off the ropes and dropped to the mat.
He’s still down and groggy. The refis counting. 1..2..3..4..5.. XP is
getting up. Freedom is getting ready to level another one of those
devastators. But, wait! There is the bell ending round 9. It seems
XP has just been saved by the bell. | can’t believe he would have
survived another one of those. What did Freedom hit him with, Don?

Don: Quality requirements, Howard. Quality Requirements are
Freedom’s way of systematically and continuously infusing quality
into the design.

Howard: Here’s the official call. The round goes to Freedom. No
surprise there, after what we just saw. Score is now XP 5, Freedom
3. Tell us more about those Quality Requirements, Don.

Don: Quality Requirements are ’ilities’ like reliability and usability,
ranked to reflect the customer’s needs for different types of quality.
Freedom uses these ranked ’ilities’ as decision criteria to select
among competing design and implementation alternatives at every
step in the development process. When used in this way, Quality
Requirements directly address the "Continuous attention to technical
excellence" part of the "Technical excellence" principle. Quality
Requirements are also the heart of what Freedom calls its "service-
oriented" approach to development, where service—oriented isn’'t
narrowly defined as just "web services," but more broadly
encompasses the customer’s total needs for quality. Itis a very
powerful concept, and XP has nothing like it. Freedom showed a lot
of poise by holding that punch back until XP was off balance. There
was then no way for XP to recover. XP almost went down for the full
count.

Howard: XP narrowly dodged a fatal bullet. When it comes to the
technical parts of development, Freedom certainly does look
impressive. It remains to be seen if that will be sufficient to prevalil
here today, though, Don.

48

Don: That's right, Howard. XP still has a 2 point lead, and there are
only 3 rounds to go. Freedom has to make a clean sweep from here
on out. It's going to be interesting to see if he can do it.

49

Round 10

Maximizing work not done

Howard: Start of round 10. Round 10 will determine which of our
two contenders best supports Agile Principle 10, Maximizing work
not done:

Simplicity——the art of maximizing the amount
of work not done—-is essential.

Don: They are both back in the ring again. XP is still a little groggy
after that "Technical excellence" drubbing he took in round 9.
Freedom is leaning on his momentum and delivering the first punch,
a "Definition of Requirements" swing.

Howard: That sent XP reeling, but also seemed to wake him up. XP
is coming back with "Do the simplest thing that can possibly work".
That punch definitely hits on the principle, but barely fazed Freedom.
| don't getit. That should have really knocked Freedom for a loop,
but didn’t. Also, what does "Definition of Requirements" have to do
with "maximizing work not done," and why is that so much more
effective than XP’s direct Simplicity punch?

Don: Not sure, Howard. Doesn’t make much sense to me either.
"Maximizing work not done" is supposed to be one of XP’s strong
points, yet XP is definitely taking it on the chin here, too.

Howard: Now XP has gone to his "Never Add Functionality Early"
punch. He’s connecting on Freedom, but Freedom seems to be just

50

shrugging these powerful punches off. Now Freedom has come
back with "Reusable Requirements" and "Reusable Classes" blows.
Those, too, are having more effect on XP than visa versa. By the
way, what's a reusable requirement?

Don: No doubt about it. XP is taking a beating on the "Maximizing
work not done" principle. This is a big surprise. | would have
thought XP would trounce any other methodology here, but Freedom
is drawing all the blood. Not exactly sure what a "Reusable
requirement” is, but | can understand why Freedom’s "Reusable”
swings are so effective. Software reuse is one of the most effective
ways known of "maximizing work not done" by avoiding reinventing
the wheel, so to speak. If Freedom can indeed reuse requirements
as well as code, that would certainly increase the power of his
Reuse punch. But the stunning effectiveness of Freedom’s
"Definition of Requirements" punches in "maximizing work not done"
Is a mystery. | can’t explain it, Howard. Ouch! More gashes are
opening on XP.

Howard: There’s the bell ending round 10. The ref is not hesitating
with his decision. Round 10 to Freedom. The score is now XP 5,
Freedom 4.

Don: | see it, but | still don’t understand it. Peter, do you have any
insight as to what just happened down there?

Peter: | have Freedom’s coach here. Coach, can you explain what
we just saw? Why is Freedom’s "Definition of Requirements" so
effective at "maximizing work not done"?

Freedom Coach: Because the black box definition of requirements
means that specifying, designing and implementing the software
external interface becomes your requirements process. At some
point, the external interface has to be developed, there is no way
around it. By recognizing this as requirements, Freedom eliminates
the work other methodologies expend on fruitless things like User
Stories in the name of "requirements.” Not only are these things not
requirements, they are not even needed. It is entirely feasible to

51

build software without detailing its usage scenarios, but it is
impossible to build software without creating an external interface.
The work savings is phenomenal. For example, XP says to create
60—-100 User Stories for each Release. This takes many months,
yet is totally unnecessary. In the same amount of time that XP
spends writing 60—-100 prose stories for one Release —— and
remember "Prose is the sign of an error” in requirements ——
Freedom works out the details of the software interface for the entire
application with the customer, implements the code for the interface,
and delivers this Ul Prototype to the customer so they can verify the
correctness and completeness of the interface, which remember are
requirements by definition. Meanwhile, XP has yet to write a line of
code, and instead has a pile of unnecessary prose. Since XP only
"maximizes work not done" in the context of code, they have not yet
begun to save anything, while Freedom has just saved months of
development time compared to XP. In short, XP addresses the
principle tactically, or "in the small" at the lines of code level, while
Freedom addresses it strategically, or "in the large" at the
requirements definition and process level. Freedom can additionally
address the principle "in the small" as XP does, but we choose not
to. Freedom believes the XP rules of "Do the simplest thing that can
possibly work" and "Never Add Functionality Early" are
misinterpreted by literal-minded developers so often that Freedom
refuses to recommend these rules.

Peter: Can you clarify why you think those XP rules are
misinterpreted?

Freedom Coach: I'd like to, but the next round is about to start.
Maybe after the match is over and we’ve taken XP’s crown.

Peter: Ok, coach. Thanks, and good luck! Back to you, Don.
Don: Well, there you have it. Freedom totally changes the rules for
requirements via its definitions, thereby categorizing XP’s User

Stories as "unnecessary!" And he still thinks Freedom is going to
pull this out and become the new champ, Howard.

52

Howard: He certainly seems confident. Two rounds to go and only
one point separation. Freedom could do it, Don.

Don: After the last two rounds, It's tempting to think he just might.

But look at the next Agile Principle, Howard. It's management
related.

53

Round 11

Face—-to—-face conversation

Howard: Round 11 is about to begin. Round 11 will be decided by
best support for Agile Principle 11, Face—to—face conversation:

The most efficient and effective method of
conveying information to and within a development
team is face—to—face conversation.

Don: Management related, Howard. Not good for Freedom.

Howard: You could be right, Don. Ok, here we go. Both contenders
have entered the ring.

Don: They are circling each other. XP is opening up with his
"Customer Is Always Available" jab.

Howard: Freedom isn’t backing off on this one. He’s responding
with "Customer POC."

Don: Of course! Freedom requires that a customer representative,
or Point of Contact, participate in development of the requirements.
Freedom is fending off XP’s opening punch with an equivalent one of
his own.

Howard: XP sees he’s getting nowhere with that one. Now he’s

shifted to "Pair Programming" punches. There’s a lot of face—to—
face conversation in pair programming.

54

Don: But Freedom is countering that too, Howard. He’s striking
back with "Pair requirements.” Freedom'’s philosophy is that
developing requirements in pairs is even more beneficial than
developing code in pairs. One of the pair must be a customer POC,
though, or someone knowledgeable about the customer’s
functionality needs.

Howard: Freedom is holding his own against XP for this
management principle, Don. They are both getting smacks on the
other. Nobody is backing down.

Don: Looks pretty evenly matched, Howard. Now XP is shifting
again, looking for an edge. He’s gone to his "Daily Stand Up
Meeting" punch. There is obviously a lot of face—to—face
conversation in meetings.

Howard: Freedom took that blow pretty hard, then glanced into his
corner, Don.

Don: | think | know why, Howard. He’s instinctively looking to his
management methodology partner for support with things like
meetings. Of course, Freedom isn’t paired with a management
methodology today. | don’t think Freedom has a defense against
XP’s Stand Up Meetings.

Howard: Looks like you're right, Don. Freedom is taking some
heavy hits now, and is backing up.

Don: Freedom is doing his best with his "Customer POC" and "Pair
requirements” punches, but it's not enough. XP’s got him, Howard.

Howard: The bell has just sounded ending round 11.

Don: The ref is about to announce the call. We know what's it's
going to be.

Howard: Right. Round 11 to XP! Score is now XP 6, Freedom 4. A

55

2 point spread and one round to go.

Don: That's the match, Howard. No way Freedom can win. The
last round is just a formality.

Howard: That's too bad. | was starting to like the looks of Freedom.
He’s extremely strong and agile technically. But he needs a
management methodology partner to balance things out. XP’s
strengths are mostly in the management area, and that's showing
here today. XP’s management strengths have outmatched
Freedom’s technical advantages.

Don: Sorry to cut in Howard, but Peter has Freedom’s coach aside
for another statement. Switching over to you, Peter.

Peter: Thanks, Don. Freedom’s coach is here, and has something
to say. Coach?

Freedom Coach: | just want to say for the record that Principle 11 is
another flawed Agile premise. Modern communications
technologies such as chat rooms, instant messaging, wikis, and
video conferencing make physical presence unimportant for many
projects. For example, the entire Open Source Software movement
Is accomplished without any physical presence. Also, there are
situations where face—to—face conversation is not the best
alternative, such as complex or controversial topics which require
substantial thought and analysis to properly formulate one’s position.
In such cases, remote communication such as email is more
effective as it encourages "thought time" before responding, which
reduces the risk of brash or ill-conceived pronouncements that often
occur in face—-to—face conversation. While face—-to—face
communication is certainly effective in some cases, it is not always
the best as the principle states. Principle 11 is just plain false and
should be dropped as an Agile Principle.

Peter: Coach, do you really think the Agile community will drop this
principle?

56

Freedom Coach: They will if they are truly striving to improve
software based on a rationale assessment of the world instead of
stating principles and pronouncements that do not reflect reality. It's
up to them.

Peter: Back to you, Don.

Don: Thanks, Peter. | detected sour grapes in the coach’s
statement, Howard.

Howard: That's to be expected under the circumstances, Don.
Actually, | find it hard to read Freedom’s mood at this point. He
could be very despondent or boiling mad. The next round should
show us which.

57

Round 12

Changing requirements

Howard: We are ready to start the last round, number 12. Round 12
will be decided by best support for Agile Principle 12, Changing
requirements:

Welcome changing requirements, even late in
development. Agile processes harness change for
the customer’s competitive advantage.

Don: The contenders are back in the ring. XP is light on his feet and
jaunty. He knows he’s retained his crown even if he looses this
round, which of course he will try to avoid at all costs.

Howard: Freedom'’s jaw is hard—set and he has a determined,
almost confident, look. Not despondent at all. He’s no doubt going
to try to make a good showing in this round, knowing that folks often
hang on to that last impression the longest.

Don: There they go! XP throws a "Release Planning" punch, XP’s
way of adjusting to changing requirements. Freedom ducks out of
the way, making XP miss. XP throws his "User Stories" punch. It
glances off Freedom as he rolls with it. XP continues to throw his
two requirements punches. Freedom backs up toward the ropes,
staying at arms length and keeping XP’s punches from connecting.
So far Freedom hasn’t thrown any himself. Strange.

Howard: Now Freedom circles back away from the ropes, keeping

58

just far enough from XP to make his punches ineffective. XP is
following, trying to get in close enough to really connect. Now XP is
between Freedom and the ropes. Freedom stops backing, finally
letting XP come a bit closer...

Don: A lighting quick "Definition of Requirements" and "Prioritization
of Requirements" 1-2 punch from Freedom! XP bounces off the
ropes. A quick 360 spin gains momentum for an "Encapsulation of
Requirements" blow that catches XP on the rebound off the ropes.
A devastating smash to the head!!

Howard: XP is down on the mat. He appears to be out cold! The
ref is starting the count. 1..2..3..4..5.. still no movement from XP.
8..9..10!I XP is out!

Don: It's a technical knockout for Freedom!!

Howard: Freedom TKO'd him, Don. Incredible! Freedom wins the
match on a lightning quick technical knockout.

Don: The refis signaling a win. Freedom’s arms are up in victory!
Howard: XP’s trainers are out on the mat trying to revive him. He's
still out cold. They’re signaling for the stretcher team. XP is being

carried off.

Don: What were you saying about a "good showing in the end"
Howard?

Howard: | wasn’t expecting anything like this!! I still hardly believe

what we just saw. Freedom'’s strength and agility for requirements
changes almost defy description!

59

Post—-Game

60

Freedom Interview

Don: Peter is with Freedom now.

Peter: That was a phenomenal showing in the last round! How did
you do it?

Freedom: Requirements are what | do best, man! That's what | was
created for, work out constantly for. When it comes to requirements
definition, change, and agility —— I'm the best!!

Peter: For a while you were pretty far behind XP. Were you ever
worried?

Freedom: Coach and | knew we’d trounce him in the end.
Peter: Ok!' Anything else you'd like to say to anyone?

Freedom: I'd like to thank Dr. David Parnas and the late Dr. Harlan
Mills for their great guidance. And all the fine folks who worked on
the Space Station Freedom Software Support Environment Project
for bringing me up right. And of course, to my coach, who slimmed
me down to lightweight class, works me out constantly, and teaches
me new moves. Without them | wouldn’t be who | am. Oh, and hi,
Mom!

Peter: And here’s Freedom’s coach. Congratulations on a
spectacular win!

Freedom Coach: Thank you. It's been a long road getting here,

61

over 12 years. But | think we've shown what Freedom can do, even
when judged against the new Agile rules, with all their flaws.

Peter: Freedom certainly shows a lot of technical power and agility.
It's clear Freedom’s strength is technical, especially in requirements,
and that you defer management issues to a partner methodology.
Do you have a favorite management methodology that you prefer as
a partner?

Freedom Coach: We do prefer to focus on the technical side of
software development, and leave the management aspects to a
partner methodology. We believe that separation of management
and technical concerns has important advantages for a project. No,
we have no current favorite management methodology. We are
investigating some of the newer ones like Crystal and Lean, but
have not reached any conclusions or formed any preferences yet.

Peter: XP showed some pretty good management moves today.
Would you consider partnering Freedom with XP, coach?

Freedom Coach: Yes, XP has some great management attributes.
We would consider partnering with them if XP agreed to shoulder
only the management role, and deferred the technical side to
Freedom. But that is up to XP.

Peter: Thanks very much. coach. Again, congratulations on a
stunning win!

Freedom Coach: Thank you.

62

XP Interview

Peter. We were finally able to catch up with XP’s coach. We have
him here now. How is XP doing? Is he Ok?

XP Coach: XP is just fine.

Peter: That's really good to hear. Coach, this was obviously a
disappointing loss. What do you think of Freedom?

XP Coach: Totally unorthodox.

Peter: You have to admit his technical moves were effective today.
XP Coach: We don’t admit to any such thing.

Peter: Is XP ready to fight Freedom again to regain the crown?

XP Coach: As far as we're concerned, XP never lost it.

Peter. What about the idea of XP being a management
methodology partner with Freedom?

XP Coach: No comment.
Peter: Anything else you care to say, coach?
XP Coach: No. Excuse me, I've got to go.

Peter: This is Peter at ringside. Back to you, Don.

63

Don: Thanks, Peter. Here’'s Howard with the recap.

Recap

Howard: Here is the summary of the action:

Round 1, Businessman-developer cooperation. XP’s Stand Up
Meetings cannot be countered by Freedom. Round to XP.

Round 2, Developer trust. Freedom’s "Fake It" principle shows more
relevance than XP’s Move People Around, Release and Iteration
Planning, or Pair Programming. Round to Freedom.

Round 3, Sustainable development. XP’s No Overtime and Iteration
Planning cannot be countered by Freedom. Round to XP.

Round 4, Self-organizing teams, is not addressed well by either
methodology. Tie round; no winner.

Round 5, Team tuning, is more directly addressed by XP’s Move
People Around and Fix XP When It Breaks than by Freedom’s Metric
Checklists and Separation of Technical and Management
Methodology Concerns. Round to XP.

Round 6, Frequent releases, is better addressed by XP’s Iteration
Planning and Frequent Small Releases than by Freedom’s
Requirements Prioritization. Round to XP.

Round 7, Early and continuous delivery, is better handled by
Freedom’s Requirements Prioritization and Ul prototyping than by
XP’s Iteration Planning and Frequent Small Releases. Round to
Freedom.

65

Round 8, Software progress, is more directly addressed by XP’s
Project Velocity than by Freedom’s Metric Checklists. Round to XP.

Round 9, Technical excellence, is addressed by many artifacts of
both methodologies including Freedom’s Object Model Tables,
Abstract Interface Specs, Partial Functional Simulations, Canonical
Design Architecture, Coding Style Guide, Software Decision
Encapsulation, Hardware Interface Encapsulation, Definition of
Design, Definition of Implementation, and Quality Requirements and
XP’s CRC Cards, Spike Solutions, Coding Standards, Refactor
Mercilessly, and System Metaphor. However, Quality Requirements
gives a decisive edge to Freedom. Round to Freedom.

Round 10, Maximizing work not done, is better addressed by
Freedom’s Definition of Requirements, Reusable Requirements, and
Reusable Classes than by XP’s Do the Simplest Thing That Will
Work and Add No Functionality Early. Round to Freedom.

Round 11, Face—to—face conversation, is better handled by XP’s
Customer Is Always Available, Pair Programming, and Stand Up
Meetings than by Freedom’s Customer POC and Pair
Requirements. Round to XP.

Round 12, Changing requirements, is far better met by Freedom’s
Definition of Requirements, Requirements Prioritization, and
Requirements Encapsulation than by XP’s User Stories and Release
Planning. Round and match to Freedom.

Don: Thanks, Howard. The per principle score for each side is
shown in the table on your screen.

66

Per Principle Score

Agile Principle Type Winner
1 Businessman—-developer cooper mgmt XP
2 Developer trust mgmt Freedom
3 Sustainable development mgmt XP
4 Self-organizing teams mgmt tie
5 Team tuning mgmt XP
6 Frequent releases tech XP
7 Early, continuous delivery tech Freedom
8 Software progress mgmt XP
9 Technical excellence tech Freedom
10 Maximizing work not done tech Freedom
11 Face-to-face conversation mgmt XP
12 Changing requirements tech Freedom
Total 7 + 5 =12
XP 5 + 1 = 6
(71%) (14%) (50%)
Freedom 1 + 4 5

(20%) (80%):(42%)

Freedom Homepage: http://www.jreality.com/freedom/
XP Homepage: http://www.extremeprogramming.org/

Don: Itis interesting to note that either methodology by itself
addresses only about half of the Agile Principles, with Freedom
excelling on the technical principles and XP best addressing the
management principles. Thus, both methodologies are strong, but in
different areas. A near—ideal Agile methodology would combine the
strengths of each.

Howard: Good summary, Don, except you forgot about those Agile
Principle changes that Freedom recommended. How many were
there?

Don: Right, Howard. Freedom went on record recommending
changes to four of the 12 Agile Principles.

67

Howard: Can you summarize those for us?

Don: Sure, Howard. Freedom suggests Principle 4 be changed
from

The best architectures, requirements, and designs

emerge from self-organizing teams.
to

The best architectures, requirements, and designs

emerge from rationally—defined products developed

by self-organizing teams.

Freedom recommends Principle 6

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter time scale.

be changed to address "actual customer release needs" rather than
"frequent” releases.

They suggested Principle 8 be changed from

Working software is the primary measure of progress.
to
Working software, with accompanying customer—approved
requirements, designs, tests, and user documentation,
is the primary measure of progress.

Finally, Freedom recommends that Principle 11
The most efficient and effective method of
conveying information to and within a development

team is face—to—face conversation.

be dropped because face—to—face conversation is not always best,
so the Principle is "just plain false."

68

Howard: Thanks, Don. That's it, sports fans. Thanks for joining
Peter, Howard and Don, the PHD team, for the First Agile Slugout.

69

References

"A Rational Design Process: How and Why to Fake It,” D.L. Parnas
and P.C. Clements. IEEE Transactions on Software Engineering,
Vol. SE-12, No. 2, February 1986.

"Agile software development methods, Review and analysis,” Pekka
Abrahamsson, Outi Salo, Jussi Ronkainea, and Juhani Warsta. VTT
Electronics, VTT Publications 478, 2002.

Agile website: http://www.agilemanifesto.org/

Freedom website: http://www.jreality.com/freedom/

"No Silver Bullet —— Essence and Accidents of Software
Engineering," Frederick P. Brooks, Jr. Computer, Vol. 20, No. 4,
April 1987.

XP website: http://www.extremeprogramming.org/

70

Alphabetical Index

Abstract Interface Spec 45p., 66 Object Model Table 45p., 66

Add No Functionality Early 66 Open Source 5, 56

Agile Alliance 5,8, 10 Pair Programming 23, 54, 65p.
Agile Manifesto 5 Pair Requirements 55, 66

black box 29,40,51 Parnas 7, 15pp, 23pp, 29p.,
Brooks 5p., 70 46p., 61, 70
business people 11, 19 Partial Functional Simulation 46, 66
Canonical Design Architecture 46, 66 Project Velocity 43, 66

Class Diagram 45 Prose is the sign of an error 29, 52
Coding Standard 47, 66 Quality Requirement 16, 48, 66
Coding Style Guide 47, 66 Refactor Mercilessly 47, 66
CRC Card 34,46,66 Release Planning 58, 66
customer—centric 16p. Requirements Encapsulation 16, 66
Customer Is Always Available 54, 66 Requirements Prioritization 65p.
Customer POC 54p., 66 Reusable Class 51, 66
Definition of Design 47, 66 Reusable Requirement 16, 51, 66
Definition of Implementation 47, 66 self-organizing team 12, 28pp, 65,
Definition of Requirement 16, 30, 50p., 67p.

59, 66 Separation of 33p., 62, 65
Do the Simplest Thing 50, 52,66 service—oriented 16p., 48
face—to—face conversation 12, 54pp, Silver Bullet 5pp, 70

66pp

23pp, 30, 65, 70
Fix XP 22p., 30, 32p., 65
Freedom Ship 7,15
Frequent Small Releases 35p., 65
Hardware Interface Encapsulation

47, 66
interface—centric 16p., 41
Iteration Planning 22, 26, 35, 39, 65

Fake It

management—neutral 16p.

Metric Checklists 32, 43, 65p.
Mills 7, 15pp, 29, 61
motivated individuals 11, 22
Move People Around 30, 33, 65

No Overtime 26, 65

Software Decision Encapsulation 47, 66
Space Station 7,15, 61
Spike Solution 40, 46, 66
Stand Up Meeting 19, 21, 25, 55, 65p.

stimulus set 40

Sustainable development 11, 26p., 65,
67

System Metaphor 47, 66

Ul Prototype 16, 39pp, 52

Ul prototyping 39p., 65

UML 45

User Stories 29, 34, 40, 43, 51p.,

58, 66

Working software 10, 12, 35, 42p., 68

71

